首页> 外文OA文献 >Multiscale Empirical Interpolation for Solving Nonlinear PDEs using Generalized Multiscale Finite Element Methods
【2h】

Multiscale Empirical Interpolation for Solving Nonlinear PDEs using Generalized Multiscale Finite Element Methods

机译:用于求解非线性偏微分方程的多尺度经验插值   广义多尺度有限元方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we propose a multiscale empirical interpolation method for solving nonlinear multiscale partial differential equations. The proposed method combines empirical interpolation techniques and local multiscale methods, such as the Generalized Multiscale Finite Element Method (GMsFEM). To solve nonlinear equations, the GMsFEM is used to represent the solution on a coarse grid with multiscale basis functions computed offline. Computing the GMsFEM solution involves calculating the residuals on the fine grid. We use empirical interpolation concepts to evaluate the residuals and the Jacobians of the multiscale system with a computational cost which is proportional to the coarse scale problem rather than the fully-resolved fine scale one. Empirical interpolation methods use basis functions and an inexpensive inversion which are computed in the offline stage for finding the coefficients in the expansion based on a limited number of nonlinear function evaluations. The proposed multiscale empirical interpolation techniques: (1) divide computing the nonlinear function into coarse regions; (2) evaluate contributions of nonlinear functions in each coarse region taking advantage of a reduced-order representation of the solution; and (3) introduce multiscale proper-orthogonal-decomposition techniques to find appropriate interpolation vectors. We demonstrate the effectiveness of the proposed methods on several examples of nonlinear multiscale PDEs that are solved with Newton's methods and fully-implicit time marching schemes. Our numerical results show that the proposed methods provide a robust framework for solving nonlinear multiscale PDEs on a coarse grid with bounded error.
机译:本文提出了一种求解非线性多尺度偏微分方程的多尺度经验插值方法。所提出的方法结合了经验插值技术和局部多尺度方法,例如广义多尺度有限元方法(GMsFEM)。为了求解非线性方程,使用GMsFEM表示具有离线计算的多尺度基函数的粗糙网格上的解决方案。计算GMsFEM解决方案涉及计算精细网格上的残差。我们使用经验插值概念来评估多尺度系统的残差和雅可比行列式,其计算成本与粗尺度问题成比例,而不是与完全解析的精细尺度成比例。经验插值方法使用基函数和便宜的反演,这些函数是在离线阶段计算的,用于基于有限数量的非线性函数求值来查找展开中的系数。提出的多尺度经验插值技术:(1)将计算非线性函数划分为粗略区域; (2)利用解的降阶表示来评估每个粗糙区域中非线性函数的贡献; (3)引入多尺度固有正交分解技术以找到合适的插值矢量。我们在牛顿方法和完全隐式时间行进方案解决的非线性多尺度PDE的几个示例上证明了所提方法的有效性。我们的数值结果表明,所提出的方法为求解带误差的粗糙网格上的非线性多尺度PDE提供了鲁棒的框架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号